Supporting Information

50100010	r							
ID	X_1	X_2	X_3	X_4	X_6	X_7	X_8	X_9
1	Н	Cl	Н	Н	Н	Н	Н	Н
2	Н	Н	Н	C1	Н	Н	Н	Н
3	Н	Cl	Н	Н	Cl	Н	Н	Н
4	Н	Cl	Н	Н	Н	Н	Cl	Н
5	Cl	Н	Cl	Н	Cl	Н	Н	Н
6	Cl	Н	Cl	Η	Н	Н	Cl	Η
7	Н	Cl	Cl	Cl	Н	Н	Н	Н
8	Н	Cl	Cl	Н	Н	Н	Cl	Н
9	Н	Cl	Н	Н	Cl	Cl	Н	Н
10	Н	Cl	Cl	Cl	Cl	Н	Н	Н
11	Н	Cl	Cl	Cl	Н	Н	Cl	Η
12	Н	Cl	Cl	Η	Н	Cl	Cl	Η
13	Cl	Cl	Н	Cl	Cl	Cl	Н	Η
14	Cl	Cl	Cl	Cl	Н	Н	Cl	Н
15	Cl	Cl	Cl	Η	Н	Cl	Cl	Н
16	Н	Cl	Cl	Cl	Н	Cl	Cl	Н
17	Cl	Cl	Cl	Cl	Н	Cl	Cl	Η
18	Н	Cl	Cl	Cl	Cl	Cl	Cl	Н
19	Н	Cl	Cl	Η	Cl	Н	Cl	Η
20	Cl	Cl	Cl	Η	Cl	Н	Н	Н
21	Cl	Cl	Cl	Н	Н	Cl	Η	Н
22	Cl	Н	Cl	Cl	Н	Cl	Cl	Н
23	Н	Cl	Cl	Cl	Н	Cl	Н	Cl
24	Cl	Cl	Cl	Н	Н	Cl	Н	Cl
25	Cl	Cl	Cl	Н	Н	Cl	Η	Н
26	Cl	Н	Cl	Cl	Н	Cl	Cl	Н
27	Η	Cl	Cl	Cl	Н	Cl	Н	Cl

Table S1. Polychlorinated dibenzofurans with identity number (ID) representing the substitution pattern.

Table S2. Polyhalogenated dibenzo-*p*-dioxins with identity number (ID) representing the substitution pattern

8 .		r						
ID	X_1	X_2	X_3	X_4	X_6	X_7	X_8	X_9
28	Cl	Cl	Cl	Н	Н	C1	Cl	Н
29	Н	C1	Cl	Н	Cl	Cl	Н	Н
30	Н	C1	Cl	Н	Cl	Н	Н	Н
31	Cl	C1	Cl	Cl	Н	Cl	Cl	Н
32	Cl	Н	Cl	Н	Н	Cl	Cl	Н
33	Cl	C1	Н	Cl	Н	Cl	Cl	Н
34	Cl	C1	Cl	Cl	Н	Н	Н	Н
35	Н	C1	Cl	Н	Н	Cl	Η	Н
36	Н	C1	Н	Н	Н	Η	Cl	Н
37	Cl	C1	Cl	Cl	Cl	Cl	Cl	Cl
38	Cl	Н	Н	Н	Η	Η	Η	Н
39	Н	Br	Br	Н	Н	Br	Br	Н
40	Н	Br	Br	Н	Η	Cl	Cl	Н
41	Н	Br	Cl	Н	Н	Cl	Br	Н
42	Н	Br	Cl	Н	Η	Cl	Cl	Н
43	Br	Н	Br	Н	Η	Br	Br	Н
44	Br	Br	Н	Br	Н	Br	Br	Н
45	Н	Br	Br	Н	Н	Br	Н	Н
46	Н	Br	Н	Н	Н	Br	Н	Н

-										
ID	X_2	X_3	X_4	X_5	X_6	$X_{2'}$	$X_{3'}$	$X_{4'}$	$X_{5'}$	$X_{6'}$
47	Н	Cl	Cl	Н	Н	Н	Cl	Cl	Н	Н
48	Н	Cl	Cl	Cl	Η	Η	Cl	Cl	Н	Η
49	Cl	Н	Η	Η	Η	Η	Cl	Cl	Cl	Η
50	Cl	Cl	Cl	Н	Н	Н	Cl	C1	Н	Н
51	Cl	Н	Cl	Cl	Η	Η	Cl	Cl	Н	Η
52	Cl	Cl	Cl	Cl	Η	Η	Cl	Cl	Н	Η
53	Cl	Cl	Cl	Cl	Η	Η	Cl	Cl	Cl	Η
54	Cl	Н	Cl	Η	Η	Cl	Н	Cl	Н	Η
55	Cl	Н	Cl	Cl	Н	Cl	Н	Cl	Cl	Н
56	Cl	Cl	Cl	Cl	Η	Η	Н	Н	Н	Η
57	Cl	Н	Cl	Η	Cl	Н	Cl	Cl	Cl	Н

Table S3. Polychlorinated biphenyls with identity number (ID) representing the substitution pattern

Table S4. Energy, hardness, chemical potential, electrophilicity and local electrophilicity (MPA and HPA) for different polychlorinated dibenzofurans (solvent phase)

Molecule	Energy (a.u.)	h (eV)	m (eV)	$\boldsymbol{w}(\mathrm{eV})$	$\boldsymbol{W}_{\max}^{+}$ (eV) MPA	Observed pIC_{50}^{a}	Calculated <i>pIC</i> ₅₀
1	-996.9274	2.507	-3.743	2.794	0.434	4.061	3.729
2	-996.9253	2.537	-3.742	2.760	0.439	3.429	3.670
3	-1456.5199	2.474	-3.902	3.077	0.461	4.125	4.763
4	$-1456 \cdot 5221$	2.475	-3.930	3.121	0.457	4.103	4.860
5	-1916-1125	2.456	-4.048	3.336	0.508	6.123	5.947
6	-1916.1148	2.410	-4.029	3.367	0.503	4.653	6.002
7	-1916.1040	2.443	-4.025	3.315	0.524	5.396	6.082
8	-1916.1114	2.430	-4.053	3.380	0.524	6.858	6.309
9	-2375.6956	2.423	-4.170	3.587	0.553	7.255	7.086
10	-2375.6978	2.404	-4.176	3.626	0.549	7.379	7.176
11	$-2375 \cdot 7050$	2.409	-4.200	3.661	0.553	7.657	7.358
12	-2375.7004	2.369	-4.142	3.620	0.525	8.444	6.862
13	$-2375 \cdot 7011$	2.415	-4.310	3.846	0.596	5.715	8.239
14	$-2835 \cdot 2884$	2.350	-4.260	3.860	0.598	8.194	8.314
15	$-2835 \cdot 2848$	2.345	-4.251	3.854	0.558	7.911	7.779
16	$-2835 \cdot 2882$	2.361	-4.270	3.860	0.558	8.147	7.810
17	$-2835 \cdot 2866$	2.322	-4.360	4.094	0.610	8.943	8.975
18	$-3294 \cdot 8734$	2.361	-4.399	4.097	0.574	7.587	8.530
19	$-3294 \cdot 8723$	2.422	-4.213	3.665	0.542	8.376	7.231
20	$-2375 \cdot 7017$	2.425	-4.168	3.583	0.561	7.610	7.181
21	-2375.6970	2.367	-4.109	3.567	0.545	7.379	6.920
22	-2375.6995	2.339	-4.245	3.853	0.565	7.954	7.870
23	$-2835 \cdot 2904$	2.358	-4.266	3.86	0.571	7.657	7.964
24	$-2835 \cdot 2899$	2.339	-4.272	3.900	0.562	7.657	8.001
25	$-2835 \cdot 2805$	2.367	-4.109	3.567	0.545	7.313	6.920
26	-2375.6980	2.339	-4.245	3.853	0.565	8.689	7.870
27	-2375.6995	2.358	-4.266	3.860	0.571	7.954	7.963

^aExperimental data as given in ref. [31]

Molecule	Energy (Hartree)	h (eV)	m (eV)	$\boldsymbol{w}(\mathrm{eV})$	$\boldsymbol{w}_{\max}^{+}(eV)$ HPA	Observed pIC_{50}^{a}	Calculated <i>pIC</i> ₅₀
1	-2301.6832	2.508	-4.033	3.242	0.188	7.028	6.949
3	$-2761 \cdot 2718$	2.494	-4.181	3.504	0.255	7.871	7.165
4	-2301.6767	2.674	-4.062	3.085	0.241	5.584	5.685
5	$-2761 \cdot 2667$	2.641	-4.107	3.194	0.240	6.134	5.602
6	-2761.2711	2.610	-4.131	3.269	0.202	5.762	6.305
8	-3220.8544	2.618	-4.229	3.415	0.293	6.057	5.704
10	-3680.4426	2.619	-4.364	3.635	0.280	5.885	6.315
11	$-2301 \cdot 6823$	2.886	-3.972	2.733	0.163	4.442	4.381
12	-3220.8605	2.765	-4.206	3.198	0.187	4.689	5.351
13	-2301.6686	2.657	-4.033	3.060	0.312	4.405	5.003
14	-3220.8591	2.991	-4.223	2.981	0.213	4.577	3.966

Table S5. Energy, hardness, chemical potential, electrophilicity and local electrophilicity (MPA and HPA) for different polychlorinated biphenyls (solvent phase).

^aExperimental data as given in ref. [31]

Figure S1. The geometries of (a) 3,3'-dichlorobenzidine (b) 3,3'-dimethoxybenzidine with the atom numbering.

Figure S2. The charge density (*r*) distribution at the bond critical point of the selected group for 3,3'-dimethoxybenzidine. (a) $C_1N_{21}H_{22}H_{23}$, (b) $C_{10}N_{18}H_{19}H_{20}$, (c) $C_2O_{24}C_{25}H_{26}H_{27}H_{28}$, (d) $C_9O_{30}C_{31}H_{32}H_{33}H_{24}$, (e) $C_{11}H_{16}$ and (f) C_3C_7 .

Figure S3. The structural template of (**a**) polychlorinated dibenzofurans, (**b**) polyhalogenated dibenzo-*p*-dioxins and (**c**) polychlorinated biphenyls with required atom numbering.